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Attitude Maneuver Control of Flexible Spacecraft 
by Observer-based Tracking Control 

Hyochoong Bang*, Choong-Seok Oh 
Division o f  Aerospace Engineering, KA I S T  

373-1, Kusong-Dong, Yousong-Gu, Daejon 305-701, Korea 

A constraint equation-based control law design for large angle attitude maneuvers of flexible 

spacecraft is addressed in this paper. The tip displacement of the flexible spacecraft model is 

prescribed in the form of a constraint equation. The controller design is attempted in the way 

that the constraint equation is satisfied throughout the maneuver. The constraint equation leads 

to a two-point boundary value problem which needs backward and forward solution techniques 

to satisfy terminal constraints. An observer-based tracking control law takes the constraint 

equation as the input to the dynamic observer. The observer state is used in conjunction with 

the state feedback control law to have the actual system follow the observer dynamics. The 

observer-based tracking control law eventually turns into a stabilized system with inherent 

nature of robustness and disturbance rejection in LQR type control laws. 
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1. Introduction 

Attitude control of flexible spacecraft has re- 

ceived significant attention during last decades 

(Breakwell, 1981). The flexible spacecraft are 

represented by on-board structures such as an- 

tenna and solar arrays. The typical spacecraft 

model consists of a center rigid body and flexible 

structures attached to the center body (Breakwell, 

1981 ; VanderVelde et al., 1983). Majority of res- 

earch effort has been concentrated on such a 

model. 
Attitude maneuver of the flexible spacecraft 

causes dynamic interaction between the flexible 

parts and rigid center body, which prevents 

precision pointing of the on-board payloads 
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(Meirovitch, 1987; Singh et al., 1989). For in- 

stance, Earth observation optical cameras should 

be free of vibration for high resolution image 

mapping missions. For stereo image acquisition 

missions, frequent and rapid large angle attitude 

maneuvers of spacecraft are to be executed. Light 

flexible structures tend to cause residual vibra- 

tion, and it will increase total maneuver time until 

complete settling of the vibration. Thus the rapid 

attitude maneuver performance is strongly tied to 

the on-board flexible structures dynamics (Singh 

et al., 1989). 

There has been a lot of research and investiga- 

tion effort for such a problem. Numerical techni- 

ques have be been reported with analysis and 

experimental verification. Particular attention has 

been paid to the simultaneous large angle attitude 

maneuver with vibration suppression (Vadali, 

1984 ; Byers et al., 1989). The control laws design 

has been heavily populated by finite dimensional 

mathematical model based approaches (Wie et 

al., 1993). Some high authority control techniques 

such as LQR and other frequency domain designs 
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have been attempted (Breakwell, 1981). One key 

disadvantage of the model-based control laws is 

robustness with respect to modeling errors and 

uncertainties. Many robustified design methods 

for the model-based control laws are available 

(Wie, et al., 1993; Agrawal and Bang, 1995). 

Robust control law also has been investigated 

recently by Sung (2001). 

On the other hand, output feedback based upon 

the Lyapunov stability theory has been also ex- 

tensively investigated (Fuji i  et al., 1989 ; Junkins 

et al., 1991). Both analytical development and 

ground experimental verifications were reported 

(Junkins et ai., 1991 ; Kim et al., 1997). The prin- 

cipal advantages of  the output feedback control 

laws are primarily characterized by robustness 

and easy implementation. An output feedback 

form tracking control law using a smoothed ref- 

erence trajectory showed highly satisfactory per- 

formance. Inverse dynamic method has been also 

investigated by using a flexible link system model. 

The tip displacement is specified a priori, and a 

control law is designed in such a way that the tip 

constraint is satisfied. The control law design was 

conducted largely over frequency domain, and 

excessive computat ional  burden was required. 

In this paper, we propose a control law design 

method for the attitude maneuver of a flexible 

spacecraft model. The tip displacement about 

the inertial frame of  reference is defined, and a 

stabilizing control law is designed to satisfy the 

given constraint rigorously. The reference trajec- 

tory generation is based upon a pure smoothed 

rigid body motion without vibration. The for- 

mulation of optimal control theory turns out to be 

a two-point  boundary value problem with initial 

and terminal boundary conditions defined at sep- 

arate time instants (Bryson, 1999). Derivation of  

the two-point  value problem and associated nu- 

merical solution techniques are proposed. Direct 
solution for the two-point  boundary value prob- 
lem, however, is not easy and requires heavy 

storage for actual implementation. Consequently, 

they are not actually implemented due to the 
difficulty in numerical computation. 

An observer-based tracking control law is a 

stabilized feedback system with the constraint 

equation satisfied rigorously. Thus main analysis 

in this paper is focused on the observer-based 

tracking control approach. Two-stage design - -  a 

dynamic observer and state feedback, ensures a 

stable c losed- loop system by taking advantage of 

conventional LQR type design technique. Simula- 

tion results for observer-based tracking control 

are presented to validate the proposed method. 

2. Dynamics and Modeling 

2.1 Attitude dynamics 
First, attitude dynamics for a flexible spacecraft 

model are presented. The spacecraft model con- 
figuration is shown in Fig. I. 

Two solar arrays are attached to the center 

body. The center body is subject to a single-axis 

rotational motion (O). The control torque (u)  is 

applied to the center body. The solar arrays tend 

to vibrate due to the coupling effect with the rigid 

body rotation. They are simplified as flexible 

beams with tip masses. The solar array flexibility 

is reflected into the beam, and the frequencies 

of oscillation are tuned by the tip masses. It is 

assumed that two solar arrays are identical in 

geometric and material properties. Under the 

torque control input only to the center body, the 

deflection of  each solar array should be identical. 

v 

Fig. 1 Spacecraft model with single-axis rotation 
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Namely, the deflection takes place in an anti-  

symmetric fashion. 
The original governing equations of motion for 

the spacecraft model are given by (Junkins et al., 

1991) 

Element mass and stiffness matrices (Mo~, M~, 
K~)  are computed by using Lagrange's equation, 

and z/= [-rB, r/z, -", r/~v~ r is the flexible coordinate 

vector. Equation (4) also can be rewritten in a 

matrix form as 

. .  / .. 0 2  w ( lO+Tir ,)=u 
Z, 

/ a+  O~w \ ~w 
O~ xv ~ y ) +  EI ~-x4 =O 

(1) 

where [c is moment of inertia of the center body, 

mt is tip mass, p and E1 are the linear mass 

density and elastic rigidity of the flexible arms. 

Furthermore, /0 represents deflection of the flex- 

ible arms, represents radius of the center body, 

and l is distance from the middle of the center 

body to the tip masses. Flexible arm dynamics 

also subject to boundary conditions at the root 

and tip of the arm such as 

3w (x, t) 
w (x, t) - -  tgt =0 ,  at x =/0 (2a) 

/~w o~w .- o~w 
EI ~-x2 =0, E1 ~-xs =mt( l O + ~ u )  at x=l  (2b) 

2.2 M a t h e m a t i c a l  model ing 
The original hybrid differential equations of 

motion (Eq. (1)) can be discretized into a finite 

dimensional mathematical model. The mathema- 

tical model is developed for simulation study and 

the model-based control law design. The flexible 

displacement is approximated as (Meirovitch, 

1990) 

N 

w(x,  t) =~-].~bi(x) r/i(t) (3) 
i = l  

where (~i(x) ( i = 1 ,  2, " ' ,  N)  are shape functions 

to be obtained by solving a characteristic equa- 

tion for a cantilevered beam problem, and rB(l) 

are generalized coordinates for the flexible de- 

flection. 
The finite dimensional equations of motion in 

matrix form can be written as 

r ] } = {  10} U (4) 

M~ + Kq = Fu  (5) 

where M and K are mass and stiffness matrices, 

respectively, and F =  [ 1, 0, 0, "", 0] r is an input 

influence vector. State space form of the second 

order differential equations of motion can be 

written as 

£ = A x  + B u  (6) 

y = Cx + Du (7) 

where the state vector is defined as x =  [0, r/, O, 
,>]~. 

An output function of interest is the inertial 

displacement of  the tip mass. During the rotation- 

al maneuver, the tip mass displacement is defined 

in terms of the center body rotation and flexible 

deflection itself. The total displacement may be 

an important performance parameter during the 

attitude maneuver. Mathematically, it can be ex- 

pressed as 

y=lO+w(l, t) 
= [ L  ¢,(/),  ¢~(/), ..., ¢,,(t)]{ 0, ~1, ,~, ..., ~,,V (8) 
=Cx 

Similarly, the tip velocity information (3>=10+ 

zb(l, t ) )  can be added to the constraint equa- 

tion. The additional information may contribute 

to increasing the observability from a physical 

viewpoint. 

3. Control Law Design 

The control law design is primarily targeted to 

control the tip displacement of the flexible struc- 
tures in a way that less vibrational motion should 

be induced by the center torque input. A reference 
trajectory is generated a priori, and corresponding 
stabilizing control law is designed so that the 

reference trajectory should be tracked by satisfy- 
ing the tip displacement constraint equation. 
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3.1 Reference trajectory 

For the reference trajectory generation, we as- 
sume a pure rigid body dynamics such as 

IrOr=uT (9) 

where the reference moment of inertia (lr) cor- 
responds to that of the pure rigid motion of the 
whole system as it can be shown from Eq. (1) 
that 

/ 

Ir=Ic+ 2 f oxZdx + 2mtl 2 (10) 

The reference trajectory output of the system is 
related to the reference angle as 

Yr(t) =lOr(t) (I l) 

The reference angle and corresponding control 
input are originated from a smoothed bang-bang 
control input with one switching at the half ma- 
neuver time. The reference input is defined in the 
from 

Ur(t) =Nmaxf (At, t) (12) 

where the shaped input torque profile function 
( f ( t ,  At ) )  is presented in Fig. 2 (Junkins et al., 
1991). 

Mathematically, it is expressed as 

t z  t t 

=1 for At£t <b/2-At=h 

/(At, t)=~ =1-2 {(~t )=[3-2( tAth)] }, for h<_t<t//2+At=t2 

=-I for ta~t<_t/-At=t3 

=-I  +( t-t~)213_~{- t-t3 I1 lbr t~t<t/ 
At [ "~ At / J' 

The reference torque profile is obtained from a 
shaped bang-bang control input. The shaping 

parameter (a) is used to determine sharpness of 

N,..~ 

- N ma~ 

Reference torque 
i 

~ t , ,  s I 

, t ,'I 

Fig. 2 Shaped input function profile 

the discontinuous control command from A t =  

atz. The reference output may include the velocity 
response also such as 

Yr(t) =lOr (13) 

Also, combination of both displacement and ve- 
locity can be taken as the reference output 
orconstraint equation. For inverse dynamic prob- 
lem formulation, the following constraint equa- 
tion based upon the reference trajectory is esta- 
blished. 

y( t )  =Cx( t )  ----yr (t) (14) 

The constraint equation is used to construct a 
stabilizing control law. 

3.2 Optimal control theory 

In order to solve the control problem with the 
constraint equation (Eq. (14)) and the gover- 
ning equation in Eq. (6), we elect to employ the 
optimal control theory. The cost function with the 
constraint and governing equations satisfied is 
defined as (Bryson, 1999) 

I r ],=yx(t/) ~x(t/) 

,, (15)  
+~_f)TQx+uTRu+A'~(~-Ax-Bui+S(Cx-yr)]dt 

o 

where A, /1 are Lagrange multipliers for the state 
and constraint equations, and ~, Q, R are ap- 
propriate weighting matrices, respectively. By 
variational principle for optimal solution, it is 
required ~Ja=0,  and then we obtain 

2 = A x + B u  (16) 

A= - Qx - A  TA - cr,u (I 7) 

with the following boundary conditions 

x(O) ~ W ,  A(t/) = q ~ x ( t / )  ( , 8 )  

The optimal control input is obtained as 

u(t) = - R - 1 B r A  (19) 

The optimal control solution is obtained by 
solving the following coupled equations simulta- 
neously. 
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2 = A x - B R - I B r A  
, ~ = - Q x -  A r A - C r  z (20) 

Cx =Yr 

The last equation in Eq. (20) can be used to 
derive the following relationship 

Cfc=S)r (21) 

and by using the first equation in Eq. (20) it 
follows as 

C A x -  C B R - * B r A = y ~  (22) 

Differentiating the above equation one more 
time yields 

CAYc - C B R - ~ B r A = ~  (23) 

Substituting the state and co-state equations 
(Eq. (20)) into Eq. (24), we arrive at 

( CA2+ CBR-~BrQ)x + ( - CABR-1B r + CBR-~B rAt) ~ (24) 
+ (CBR-tBrC r) Z=~r 

Therefore, on the condition that the inverse of 
the matrix C B R - ~ B r C  r exists, one can derive the 
following relationship. 

a( t )  = A l X ( t )  +A2A(t)  + A s ~ ( t )  (25) 

for which each matrix is given by 

A I = -  ( CBR-I Br Cr) -I ( CA ~ + CBR-1Br @ 
A2= - ( CBR-IBrC r) -, ( - CABR-1Br + CBR-1BrA r ) 
Az = ( CBR-I Br Cr) -l 

Hence. the state and co-state equations can be 
rewritten as 

x = A x - B R - 1 B T A  
~ = -  Qx-ArA  - Crl~ (26) 

= _  (Q+CrA1)x - (A t+  CrA2)~-CrA3~ 

Hence, Eq. (26) constitutes a two-point  boun- 
dary value problem for the state and co-state 
vectors in the optimal control theory with the 
boundary conditions specified as 

x(to) =Xo, A(&)=liOx (t/) (27) 

The boundary conditions are specified at the 
split time instants (to, tl). For the solution of the 
boundary value problem, iterative numerical ap- 
proaches are required. In this work, different 
solution techniques are proposed to solve the 
two-point boundary value problem. 

3.3 Solution by shooting method 
In order to solve the two-pint boundary value 

problem, a popular method so-called shooting 
method could be employed. The shooting method 
provides the initial condition for the co-state at 
the initial time. 

First, the state and co-state equations are com- 
bined from Eq. (26) together in the form 

~ = { ~ .  }----A { ~ } + / ~ u  (28) 

=A$+Bu 
where ~ = [ x ,  A] r, u--Y'r, and 

rHn  H12~ - B1 
=[H21 H=J' B =[B 21  A 

for which each sub-matrix is defined to be 

Hn=A, H~=-BR-IB r 
H2~ = - Q + cr I CBR-~Br C r) -II CA2 + CBR-~BT Q) 
H~=-Ar+ cr ( CBR-I Br CT)-I(- CABR-I BT + CBR-I BrA r) 
BI=0, B2=-Cr(CBR-1Brcr) -1 

The step-by-step procedures for the shooting 
method are given by 

i) Guess A(O) 
ii) Solve 

iii) Let 

Ij 
x x 

(0) }+f (30) 
0 

o r  

x t, if) 
(31) 

iv) F ind  A/l(0) which is a correction for/t(O). 

In other words (Junkins, 1986) 

A/~ (0) = -- ~.~/l (tf) (32) 

where 

A(tj) = ~21x (0) + ~22A(0) + A ( G )  (33a) 

l /  

{; i}( t / )=foeXC°-n;BY;rdr  (33b) 

Update /1(0) in such a way that(Junkins, 1986) 
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A'+'(o) =A'(0) +AA(0) (34) u(t)  = - R - ' B r [ p x ( t )  - ~ ( t )  ] (41) 

The iteration repeats until convergence is reach- 

ed. As a special case, one-step iteration for a 

linear system may suffice to produce the solution. 

The constraint itself in Eq. (14) is a hard con- 

straint which should be satisfied exactly. In gen- 

eral, the solution process is quite complicated in 

such a hard constraint case. The numerical solu- 

tion ends up with unstable modes from the nu- 

merical integration for the state and co-state 

equations. Also, the numerical solution is highly 

sensitive to the system dynamics. Considering 

higher flexible modes, the direct approach of 

numerical solution of the two-point  boundary 

problem may pose serious difficulty in producing 

the final solution. 

3.4 Solution by riccati equation 
Another method is to solve the two-point  boun- 

dary value problem use Riccati equation which 

starts from the following equations 

Jc = A x - B R - I B r A  
, ~ = - Q x - A  r A - C r  lz (35) 

=H21x + H-A+ BzYlr 

Assume the Lagrange multiplier /1 as (Bryson, 

1999) 

A(t) =P(t)x(t) -~(t)  (36) 

where P(t) is a parameter matrix, and ~ ( t )  is an 

auxiliary signal for the tracking purpose. Fur- 

thermore, 

,~= P:~ + zOx- ~ (37) 

Substituting Eq. (38) into Eq. (36) yields 

P x + P 2 - ~ = - H 2 1 x + H z 2 ( P x - $ )  +B220~ (38) 

Next using the governing equations for Eq. (40), 

one can derive the following set of equations 

P =  - PA + PBR-I  B r p  + H.-P + H21 
~.= PBR_XBr ~ + Hz2~_ B2~9 r (39) 

which are subject to 

P(t~,) = # ,  $( t~ , )=0 (40) 

The corresponding control input is then given by 

Note that Eqs. (40) can be rewritten as 

P=-PA+[-Ar +Cr(CGCr)-~C(-AG+GAr)]p 
+PGP+[- Q+ cr( CGC r) -'C (A% GQ) I (42) 

$=-[Ar-Cr(CGCr)-~I-AG +GAr)-pG]~-B2p,(t) 

The first part of  Eq. (42) looks somewhat similar 

to the general Riccati equation in a LQR prob- 

lem. The system matrices are however different. 

The boundary conditions in Eq. (42) again in- 

dicate the problem is another two-point  boun- 

dary value problem. Numerical approach can be 

applied to design the parameters P( t ) ,  $(t)  from 

backward, and they are used finally for forward 

control input as Eq. (19). 

Massive storage requirement for backward in- 

tegration should be satisfied for actual imple- 

mentation. Also, the solution is still highly sensi- 

tive to the system modeling error. Therefore, the 

original hard constraint in Eq. (14) needs to be 

implemented in such a way that stability and 

robustness of the c losed- loop system needs to be 

ensured. The dynamic observer-based tracking 

control law in the next section is quite different 

and more practical approach than the previous 

cases. 

3.4 Observer-based tracking control ap- 
proach 

The direct numerical approach to solve the 

two-point  boundary value problem is rather im- 

practical from several perspectives. Therefore, a 

more reliable and stable method should be deve- 

loped. As a principal avenue, we propose so- 

called observer-based tracking control law ap- 

proach. 

The state equation again is given by Eq. (6) 

while the constraint equation (Eq. (14)) is in- 

stead defined as the output equation in a way that 

y (t) = Cx =y~ (t) (43) 

where the desired output (Ya) is the pre-defined 

tip displacement and /o r  tip velocities as explain- 

ed already. The output is used as an input to a 
dynamic observer written as 
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~=A.~ + L(y-C.~) =A~ + L C ( x - ~ )  
(44) 

=A:~ + L ( y d -  C:~) 

where L is a typical observer gain and £" is the 

observer state. First we design the observer gain 

L such that the closed-loop system A - L C  is 

stabilized. The closed-loop system dynamics are 

prescribed as 

= ( A - L  C) ~ +Lya (45) 

The observer state satisfies the closed-loop sys- 

tem dynamics in the sense of LQR stability with 

inherent robustness. Moreover, by subtracting 

the observer equation (Eq. (44)) from the state 

equation (Eq. (16)) we obtain 

~= ( A - L C )  e+Bu (46) 

where e=x--.f, represents the error state between 

the state and observer. Now the goal of controller 

design is to find the control command in such a 

way that e (oo) ----, 0. The plant state converges to 

the observer state asymptotically. This will even- 

tually bring the state vector satisfies the constraint 

equation (Y:Ya). That is to say, the state ap- 

proaches the observer, and the observer equation 

satisfies the output equation. Thus we attempt to 

design a feedback control law in the form 

u= - K e  (47) 

so that the closed-loop system A - L C - B K  
for the error state is stabilized in the sense of a 

typical LQR state feedback design. It should be 

noted that the closed-loop observer dynamics 

A - L C  is already a stable system. But the con- 

trol input still should be constructed, and a par- 

ticular choice is to make the error state (e) goes 

to zero by the control input so that the output 

response of the actual system follows that of the 

observer. The compound system consists of state 

and observer dynamics, and therefore can be re- 

written as 

{ ~ } = I A o  BK A - L C I {  x } + I L ] y ~  (48) 

The final state equation is therefore in the form a 

stabilized system subject to external input (Ya). 
The feedback gains (L, K) can be designed by 

the regular LQR design approach. Hence, the 

observer-based approach is more attractive than 

the direct method for which we tried to solve the 

two-point boundary value problem numerically. 

The original constraint in the observer-based 

tracking control method has been relaxed by the 

asymptotic stability of the feedback system. The 

error state tends to converge to zero asymptotic- 

ally governed by the closed-loop dynamics, so 

that the constraints equation is also satisfied with 

stabilized responses. The principal idea of this 

study is to make use of observer dynamics for 

reference trajectory generation. And then robust 

feedback control law is applied to track the ob- 

server system. Even if the control theory itself is 

well known, but the main idea using an observer 

as a reference trajectory should be paid attention 

in this study. 

4. Simulation and Analysis 

Simulation is conducted to verify the proposed 

control approach. We present the observer-based 

tracking control results only due to the difficulty 

in directly solving the two-point boundary value 

problem. First the model spacecraft data are given 

by 0=8.55 kg/m, EI= 1,620 N/m 2, L = 8 0  kgm z, 

m t = l . 0 k g ,  /0=I m, l = 6 m ,  and m t = l  kg, re- 

spectively. The finite dimensional mathematical 

model is derived by using the assumed mode 

method as explained in Eq. (5). The three shape 

functions (~bi(x), i = 1 ,  2, 3) are obtained by 

solving an eigenvalue problem for a canti-levered 

beam with a tip mass. The simple Euler-beam 

bending dynamics in conjunction with the boun- 

dary conditions are used to establish the eigen- 

value problem to obtain the shape functions. 

Consequently, the linearized second order system 

dynamics and state space form are generated. The 

mass and stiffness matrices are computed as 

1377.5 322.83 78.325 36.590 
M=/322.83 87.378 6.91 x 10 -t3 9.48 X 10 -12 

78.325 6.91 x 10 -13 87.109 4.18X10 TM 

1_36.590 9.48X10 -12 4.18X10 -tl 86.904 

[0 0 0 0 1. 
9 X -10 K =  0 299.38 0 _.35 10 

0 0 11,798 2.37 X 10-8 ] 

0 2.35 X 10 -l° 2.37X 10 -s 92,768 J 



Attitude Maneuver Control of  Flexible Spacecraft by Observer-based Tracking Control 129 

The undamped natural frequencies for the given 

matrices are computed as 0, 4.88, 15.17, and 35.44 

rad/sec, respectively. The maximum torque limit 

(Nmax) and torque shaping parameter (a) are 

selected to be 15 N-m and 0.05, respectively. The 

reference constraint equation is represented in the 

form 

[YT 1 (49) y =  C x = y a =  .~r 

Also the corresponding output matrix is given by 

C : [ ~  I ~ 1 ( [ ) ,  ~ 2 ( ' ) ,  ~ 3 ( [ ) ,  O, O, O, o 1 
0, 0, 0, l, ~b,(l), ~bz(l), ~b3(l)3 (50) 

First, the dynamic observer is designed by using 

the system and output matrices (A,  C).  Then the 

state feedback design is followed by the closed- 

loop observer dynamics. The state and observer 

equations are combined into a final system for 

simulation work. The simulation time is set to 50 

seconds enough for 60 degrees rotational maneu- 

ver. 

First, pure open- loop  maneuver with applied 

torque in Eq. (9) is examined. The time response 

is presented in Fig. 3. 

In order to reflect a practical situation, a small 

level of disturbing torque is added to the original 

control torque. The center body angle response 

in Fig. 3 illustrates the inherent disadvantage of 

the open- loop  control. Unmodelled disturbance 

usually tends to degrade pointing performance 
significantly. 

Next the observer-based tracking control law 

design results are presented in Fig. 4. The center 

body angle shows satisfactory tracking perform- 

ance over the given reference trajectory. The dis- 

turbance input identical to that of  the pure open 

- loop  simulation is added to the control com- 

mand in this case. Satisfactory tracking perform- 

ance under the existence of external disturbance is 

achieved in the simulation results of  Fig. 4. 

Time responses of the original constraint and 

actual responses are plotted in Fig. 5. Both dis- 

placement and velocity constraints are plotted. 

The constraint dynamics are determined by the 

observer and feedback control gains. 

Control input histories are displayed in Fig. 6. 

The pure open- loop  and feedback tracking con- 

trol command are displayed together. Delayed 

1,1 1.2 ...... 

g,0 

~ 0 . 8  t ,//""" ""',. 

~0"4t~ 0.S ~ / " '  I .......... ARnefgle~b; tceraacnkg/; control 

0 10 20 30 40 5O 

Time(sec) 

Fig. 4 Center body angle response by the tracking 
control law 
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response in the feedback control could be im- 

proved by designing a better gain set for the 

observer and state feedback. 

Responses of two flexible modes (rh, 03) are 

presented in Fig. 7. The flexible modes are also 

stabilized by the state feedback and observer in 

25- 
20- 
15- 
10- 

~ s- 
Z 0- 

~ -5- 

~ -10- 

8 -~s. 
-20. 

-25, 

-30. 

-35 

I / t I :• 

t ! / f • 

! : t • t : 

1'o 

Fig.  6 

L~ . . . . . . . . . .  

- - Reference t~que 
Actual control torque 

Time(seg) 

Control command histories 

0.03 t 

0.02 1 

i 0.01 t 

- 0 . 0 2 -  

o 1'o 
Time(see) 

1.2x10"t "1 
~.°~°" 1 ! 

• ~ -4.0r104 ~ 

- 8.Ox"i O* -'] 
. LOx, lO'S .-J 
-1.2x10~ 1 

0 10 20 30 40 

Time(sec) 

Fig. 7 Responses of the flexible states 

i 
,5O 

go 

conjunction with the constraint equation. 

It is believed that the overall performance of 

the combined system may be similar to a general 

LQR-based control law. This is because both 

observer for the reference trajectory generation 

and feedback control for stabilization of the 

whole system are designed by LQR synthesis 

technique. 

5. Conclusions 

The constraint equation for the tip displaceme- 

nt of a flexible spacecraft model was used to 

derive a stable tracking control law. A dynamic 

observer with the measurement input replaced 

by the constrained output history plays the role 

of a model system. The feedback control law 

which takes the error between the observer state 

and actual system state results in a stable closed- 

loop system. Simulation results are presented to 

validate the proposed idea. Hence, the observer- 

based tracking control law with stabilized closed- 

loop system response leads to a more attractive 

solution than directly solving the two-point  boun- 

dary value problem in our problem. 
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